在深度學習變得普遍之前的2010年,感知是molex連接器自動駕駛汽車能力的主要限制,但2014年之后基于深度學習的雷達技術、相機還有激光雷達,帶來了技術性能的不斷提升——那么無人駕駛汽車下一步還會迎來哪些挑戰呢? 在過去的十年里,自動駕駛領域對機器學習的大部分對話都集中在對象檢測上。對安全導航至關重要的是,我們如何才能提高自動駕駛汽車檢測和跟蹤動態物體的能力?在2010年,當深度學習變得普遍之前,感知是自動駕駛汽車能力的主要限制。其中ImageNet的分類精度在當時作為最先進的解決方案只能達到50%的準確率(相比之下,今天的準確率為88%)。雖然ImageNet分類并不能與當前最先進的目標檢測技術相提并論,但它確實代表了計算機視覺的進步。 直到2012年,AlexNet成為ImageNet競賽的首批參賽者之一,它利用卷積神經網絡進行深度學習。AlexNet在當年的ImageNet競賽上達到了最先進的精度,成為計算機視覺領域最有影響力的方法。 從2014年開始,基于深度學習(Deep Learning)的雷達技術、相機還有激光雷達,都開始悄悄進入自動駕駛領域。谷歌的自動駕駛汽車與一位坐輪椅的女士用掃帚追趕一只鴨子的奇遇,成為有史以來挑戰感知技術的一個著名例子。 如今,基于深度學習的感知技術在自動...